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ABSTRACT

An initial value approach is used to examine the dynamics of perturbations introduced into

a vortex under strain. Both the basic vortex considered and the perturbations are taken as fully

three-dimensional. An explicit solution for the time evolution of the vorticity perturbations is

given for arbitrary initial vorticity. Analytical solutions for the resulting velocity components

are found when the initial vorticity is assumed to be localized. For more general initial vorticity

distributions, the velocity components are determined numerically. It is found that the variation

in the radial direction of the initial vorticity disturbance is the most important factor inuencing

the qualitative behaviour of the solutions. Transient growth in the magnitude of the velocity

components is found to be directly attributable to the compactness of the initial vorticity.
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1 INTRODUCTION

Vortex dynamics has been a signi�cant subject of extensive investigation throughout the

history of uid mechanics. On the one hand, this interest has meant the actual establishment of

the velocity compatible with a particular vortex with the results leading to numerous prototypical

vortices that now carry names attributable to the person or the situation that created their

existence. A Burgers vortex or a trailing vortex are but two of the numerous examples. Then,

the question of the stability of any vortex has been asked. This is especially relevant if one

wants to understand the consequences of a vortex under the inuence of adverse or favorable

strain. Finally, there is the topic of vortex breakdown, a special separate topic because of its

consequences. Vorticity and vorticity interaction are the bases of turbulence. Heat and mass

transfer rely to a large degree on vortex dynamics. And, there is the geophysical environment

where vortices play major roles in both the ocean and the atmosphere. It is important, then, to

know the behavior of vortices, particularly if they are subjected to external disturbances.

The use of classical stability theory in examining a vortex ow has met with only limited

success due to the fact that the mean ow is always a function of more than one independent

variable. As a result, traditional normal mode analysis can only be used in an approximate

manner. (This conclusion is always inevitable if the perturbation system cannot be reduced

to one of ordinary di�erential equations.) Consequently, an alternative method for analysis

must be sought in order to understand the dynamics. One such procedure is available and

has already been applied to one or more rotating ows or vortices in a plane. Here, since the

basic mean ow can be synthesized from linear functions of the appropriate spatial variables

(constant shear), more general solutions of the perturbation quantities can be obtained than

those derived from normal modes. In addition, there is the bonus that the perturbation �eld

can be considered three-dimensional (cf. Craik and Criminale1 for the basic method; Bayly2 ,

Landman & Sa�man3 , Wale�e4, Dritschell5 , or Craik and Allen6 , among others, for speci�c

applications of the method to planar vortical or rotating ows). Both approaches have found

that such basic ows can be unstable and the instability depends upon various parameters and

whether or not the perturbations are two or three-dimensional. Regardless of the conclusions

from any of these treatments, it should be stressed that the work has relied on a basic vortical

velocity that is two-dimensional. More realistic vortices have ow along the axis of rotation as

well as motion in the plane. In other words, the mean ow is three-dimensional and investigation

of the stability should consider this fact along with the possibility of the perturbations being

three-dimensional.

Any general treatment of the dynamics of perturbations in an arbitrary vortex is not possible

analytically and is the principal reason why such work has been limited to or approximated in

ways such as those cited above. Still, if one examines the family of vortices that is known and

is willing to exchange one set of assumptions for others in order to obtain new insight, it is

possible to investigate a three-dimensional vortex under three dimensional perturbations. This

is the major point of this presentation. And, instead of seeking stability criteria per se, an

initial-value problem is both posed and solved. The results are general, can be expressed in

closed form, and both the early period transients as well as the asymptotic fate of disturbances

can be determined explicitly.
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2 BASIC PROBLEM

One of the better references dealing with the derivation of vortical ow is that due to

Donaldson and Sullivan7 where a great deal of e�ort was given to deriving a general solution for

a vortex family. It was found that the basic mean velocity can be written as

~u = (Ur(r); V�(r); zW (r)) (1)

where the velocity components are given in the r, �, and z-directions respectively. The coordi-

nates (x; y) de�ne the plane with r = (x2 + y2)1=2, � = tan�1(y=x); z is perpendicular to the

plane of rotation. This representation contains many of the more well-known examples, such as

the Burgers' vortex, Rott's modi�ed Burgers' vortex, or the Batchelor trailing line vortex among

others. In addition, (1) also contains viscous e�ects. The simplest fully three-dimensional vortex

with this form of representation is the potential vortex under strain and is a limiting form of

(1) or

Ur = �
�

2
r; V� =

�0

r
; W = �: (2)

The coe�cient �0 is proportional to the circulation, and the coe�cient �, which can be time-

dependent and even negative, is proportional to the strain rate. The perturbation problem

associated with the vortex (2) can be solved explicitly as an initial-value problem. In e�ect,

(2) is the inviscid limit of (1), and although being three-dimensional, it does not have a �nite

core. This lack in the basic ow does not carry over to the perturbation �eld. The pressure

corresponding to (2) is

P = �
�2

8
(r2 + 4z2)�

�0

2r2
: (3)

The vortex represented by (2) has zero vorticity. Thus, it is convenient to pose the pertur-

bation problem in terms of the perturbation vorticity which is the leading term for the vorticity

of the ow itself. With the additional assumptions of an incompressible and inviscid uid, the

perturbation equations for the vorticity are

D!r

Dt
+
�

2
!r = 0; (4)

D!�

Dt
+
�

2
!� +

2�0
r2

!r = 0; (5)

and
D!z

Dt
� �!z = 0 (6)

where the di�erential operator is given by

D

Dt
=

@

@t
�
�r

2

@

@r
+

�0

r2
@

@�
+ �z

@

@z
: (7)

The variables !r, !� and !z are the vorticity components in the r, � and z directions, respectively.

In this di�erential operator, the spatial variables r and z appear linearly as coe�cients of the

partial derivatives with respect to r and z, allowing for a transformation of the independent

variables to a moving coordinate frame given by

� = e
1
2

R t

0
�(t0)dt0

r =  1(t)r; (8)
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� = e
�

R t

0
�(t0)dt0

z =  2(t)z; (9)

and

T = t: (10)

In this frame, advection due to the mean ow in these directions is removed from (4)-(6). At

the initial time t = T = 0, the coordinates coincide as � = r and � = z, and there is no di�culty

in applying initial conditions. Since the solution must be periodic in the � variable on physical

grounds, the transformation of the dependent variables as f ! fein� will be used throughout.

On combining these two steps, the di�erential operator (7) reduces to

D

Dt
=

@

@T
+
in�0 

2
1

�2
; (11)

and the governing set of partial di�erential equations now have coe�cients that are functions of

� and T only. These equations are

@ !r

@T
+
in�0 

2
1

�2
!r = �

�

2
!r; (12)

@ !�

@T
+
in�0 

2
1

�2
!� = �

�

2
!� �

2�0 
2
1

�2
!r; (13)

and
@ !z

@T
+
in�0 

2
1

�2
!z = �!z : (14)

The equations for !r and !z are uncoupled and can be solved directly, while the equation for

!� depends upon the solution for !r . On solving (12)-(14), it is found that

!r = !0
r (�; �) 1 2E; (15)

!� =

"
!0
� (�; �)�

2�0
�2

Z T

0
 2
1(T

0) dT 0!0
r (�; �)

#
 1 2E; (16)

and

!z = !0
z(�; �) 

2
1E (17)

where !0
r = !r, !

0
� = !�, and !

0
z = !z at T = 0. The exponential factor E is de�ned as

E(�; T ) = exp(�
in�0

�2

Z T

0
 2
1(T

0) dT 0): (18)

In all cases, jEj = 1 and hence the factor E in no way contributes to the growth or decay of

the amplitude of any quantity. It should be noted at this point, that if the straining parameter

� is a positive constant, then the radial and tangential vorticity components will decay in time,

while the maximum of the axial vorticity component will grow in time, with the radial location

of this maximum approaching the core. This is certainly not surprising but it is the e�ects of

this behaviour on the velocity �eld that will be of interest.

The solutions (15)-(17) provide the means to describe the evolution of an arbitrary distur-

bance to a potential vortex under strain. In order to do this, it is only necessary to prescribe
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initial conditions in terms of the vorticity components subject to the constraint that the vortic-

ity vector must be solenoidal. Thus, only two of the three components !0
r(�; �), !

0
� (�; �), and

!0
z (�; �) are independent. At time T = 0, for example, two components are speci�ed while the

third is found from the relation

1

�

@ (�!0
r )

@�
+
in

�
!0
� +

@ !0
z

@�
= 0: (19)

Once the vorticity has been determined, the perturbation velocities ~u = (ur; v�; w) are derived

by integrating the equations obtained from the de�nitions of the vorticity, namely

!r =
in 1

�
w �  2

@ v�

@�
; (20)

!� =  2
@ ur

@�
�  1

@ w

@�
; (21)

and

!z =
 1

�

�
@ (�v�)

@�
� inur

�
: (22)

The homogeneous solution to (20)-(22) represents the potential velocity �eld and is included in

the integration in order to satisfy velocity boundary conditions.

3 INITIAL PERTURBATIONS

In this section, various initial conditions are examined in order to highlight the dynamics

of the ow with special attention given to the evolution of the velocity �eld. This is especially

relevant in view of the fact that boundary conditions are in terms of the velocities rather than

the vorticity. The actual solving of the partial di�erential equations for the velocity components

can be avoided by using a Fourier transform in the � variable without loss of generality. All

dependent quantities can be transformed as

f̂(�; ) =

Z
1

�1

f(�; �)ei� d�: (23)

It is noted that only in the moving coordinate system will the Fourier transform provide the

simpli�cations that allow the analytical solution to progress. Equivalently, separable solutions in

the moving coordinate can be sought, and this approach is taken here. Of course, initially two-

dimensional disturbances can be considered and should the initial disturbance be independent

of the z-variable, for example, then for each n the governing equations are ordinary di�erential

equations at the outset and the transform is not required.

3.1 Impulsive Sources

The �rst case considered is the two-dimensional disturbance with sources speci�ed mathe-

matically as Dirac delta functions in terms of the radial variable. This choice essentially provides

a Green's function for all arbitrary disturbances in this class. At time t = 0 and in the physical

coordinates, the vorticity components are taken as

!0
z = 
z�(r � r0); !0

� = 
��
0(r � r0); (24)

4



and, for consistency, it is required that

!0
r = �in
�

�(r � r0)

r
: (25)

The full evolution of the vorticity is readily discerned from equations (15)-(17) while the axial

velocity is found from (20) to be simply

w = �
��(� � r0) 2E(�; T ): (26)

The radial velocity must satisfy

�2
d2 ur

d�2
+ 3�

d ur

d�
+ (1� n2)ur = �in
z��(� � r0) 1E(�; T ) (27)

which has the solution (for n > 0; analogous solutions for n < 0)

ur =
i
z 1E(r0; T )

2

(
( �r0 )

n�1 � < r0

( �
r0
)�n�1 � > r0

: (28)

The corresponding tangential velocity is

v� =

z 1E(r0; T )

2

(
�( �

r0
)n�1 � < r0

( �
r0
)�n�1 � > r0

: (29)

To interpret the results, the velocities are transformed back to the physical coordinates r and t

and the factor ein� is included. It might also be of interest to calculate another physical quantity,

such as energy. For this example, both the velocities and the energy are determined.

To highlight the di�erences of the strained vortex as opposed to one in the unstrained

state, both � = 0 and � = �0, a constant, are considered. For the unstrained vortex, � = 0,

 1 =  2 = 1, and in physical coordinates, Ê(r; t) = E(r; t)ein� = exp
�
in(� � �0

r2
t)
�
with the

velocity components becoming

w = �
��(r � r0)Ê(r; t); (30)

ur =
i
zÊ(r0; t)

2

8<
:

( r
r0
)n�1 r < r0

( r
r0
)�n�1 r > r0

(31)

and

v� =

zÊ(r0; t)

2

8<
:
�( r

r0
)n�1 r < r0

( r
r0
)�n�1 r > r0

: (32)

It is noted that the velocity has a traveling wave solution in the angular direction.

For constant straining, � = �0,  1 = exp( �0
2
t),  2 = exp(��0t) and in moving coordinates

Ê(�; t) = E(�; t)ein� = exp
�
in(� � �0

�0�2
(e�0t � 1)

�
). The resulting velocity components in phys-

ical coordinates are

w = �
��(re
�0
2
t � r0) exp(��0t)Ê(r 1; t); (33)

ur =
i
zÊ(r0; t)

2

8><
>:

e
n�0
2
t( r
r0
)n�1 r < r0e

�

�0t

2

e�
n�0
2
t( r
r0
)�n�1 r > r0e

�

�0t

2

; (34)
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and

v� =

zÊ(r0; t)

2

8><
>:
�e

n�0
2
t( rr0 )

n�1 r < r0e
�

�0t

2

e�
n�0
2
t( rr0 )

�n�1 r > r0e
�

�0t

2

: (35)

For this case, there is a squeezing e�ect in which the overall pattern collapses into a core, the

size of which is decaying exponentially in time. When 
� 6= 0 and 
z = 0, the magnitude of

the velocity decays and the traveling wave motion, described by the quantity Ê, decelerates.

For 
z 6= 0 and 
� = 0, there is an apparent exponential growth in the magnitude of the

velocities ur and v� in the developing core. This is seen by noting that the velocities have their

maximum values at � = r0 (or r = r0e
�

�0t

2 ) and the maximum values grow as e
�0t

2 . There is also

a corresponding exponential increase in the velocity of the traveling wave. Thus, the two modes

are seen to behave di�erently. It is unclear how these e�ects relate to the overall stability of the

ow.

To explore the dynamics from a di�erent perspective, the disturbance energy density, given

by

En =
1

2

Z
1

0
(jurj

2 + jv�j
2 + jwj2)r dr (36)

is conveniently calculated in the moving coordinates by

En =
1

2 2
1

Z
1

0
(jurj

2 + jv�j
2 + jwj2)� d�: (37)

By considering only the case 
z 6= 0 and 
� = 0, the energy is

En =

2
zr

2
0

4jnj
; (38)

so that the perturbation energy for these two-dimensional disturbances remains constant during

the entire evolution even though the velocity pro�les are increasing in magnitude. This implies

that the long time behaviour predicted by the Green's function will most certainly be modi-

�ed when considering a spatially distributed source of vorticity. In the next subsection, this

conjecture is shown to be true.

Another set of initial conditions for which analytic solutions can be determined is taken as

being axisymmetric (n = 0) with normal mode behaviour in the axial direction. Again, using

Dirac delta functions to facilitate analytic solutions, the initial vorticity is speci�ed as

!0
r = 
r�(r � r0)e

�i0z (39)

and

!0
� = 
��

0(r � r0)e
�i0z : (40)

The value of !0
z , which is not needed in order to determine the velocities, is determined by solving

(19). The vorticity solutions of the initial value problem are given by equations (15)-(17) with

the exponential factor E = 1. The angular velocity v� is found to be

v� =
�i
r
0

 1e
�i0��(� � r0): (41)
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To determine the radial and axial velocity components, it is noted that the solutions are separable

in � and �. Hence, by dropping the exponential factor e�i0� in all quantities, the ordinary

di�erential equations that the remaining velocities must satisfy are

�2
d2ur

d�2
+ �

d ur

d�
�

"
1 +

20 
2
2

 2
1

�2

#
ur =

�i0 
2
2

 1

�2

"

� � 
r

2�0
�2

Z T

0
 2
1 dT

0

#
�(� � r0) (42)

and

w =
 1

i0 2

d

d�
(�ur) : (43)

The solutions of (42) and (43) are

ur =
�i0r0 

2
2

 1

"

� � 
r

2�0

r20

Z T

0
 2
1 dT

0

#8<
:
K1(

 2
 1
j0jr0)I1(

 2
 1
j0j�) � < r0

K1(
 2
 1
j0j�)I1(

 2
 1
j0jr0) � > r0

(44)

and

w =
�r0 2

2j0j

 1

"

� � 
r

2�0

r20

Z T

0
 2
1 dT

0

#8<
:
K1(

 2
 1
j0jr0)I0(

 2
 1
j0j�) � < r0

K0(
 2
 1
j0j�)I1(

 2
 1
j0jr0) � > r0

(45)

where K1 and I1 are the modi�ed Bessel functions.

On examining the radial and axial velocities, it is found that in the absence of a straining

vortex �eld, the terms proportional to 
� are stationary in time whereas the magnitudes of the

terms proportional to 
r grow linearly in T for all time. The addition of strain to the vortex

�eld has a stabilizing e�ect in the following manner. The terms proportional to 
� are always

exponential in time and decay in magnitude. The terms proportional to 
r display algebraic

growth for small time and the large time behaviour under constant strain, namely

ur = 
r
2i0�0

�0r0
e��0 t

8<
:

r
r0

r < r0e
�

�0
2
t

e��0 t r0r r > r0e
�

�0
2
t

(46)

shows eventual exponential decay (the axial velocity component decays even faster). Even

though standard stability based on large time behaviour would consider this ow to be stable, the

initial algebraic growth could be large enough so that nonlinear e�ects might become signi�cant

before the exponential decay dominates. It is stressed that the solutions are not restricted to

constant strain. For example, if �(t) had the behaviour that �(0) 6= 0 but �(t) ! 0 for large

time, the following scenario is possible: A period of algebraic growth is followed by a period

exponential decline, and then the very large time behaviour returns to algebraic growth. Clearly,

the overall e�ects depend upon the relative time scales.

It is of quite some interest to compare the results of the axisymmetric initial disturbance

with the two-dimensional initial disturbance. Although the vorticity components evolving from

a two-dimensional initial disturbance have linear growth in time (which continues inde�nitely for

zero strain), the velocity components do not exhibit this behaviour. For this case, the term that

produces the linear growth, namely
R T
0  2

2 dt
0; only appears in the exponential factor that controls

the traveling wave and not in the magnitude of the velocities. In the case of the axisymmetric

disturbance, the linear growth term appears directly in the magnitude of the velocities.
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3.2 Speci�c Initial Conditions

In this section, special initial sources of vorticity are employed in order to understand how

the vortex evolves in response to more general initial disturbances. Although complete analytical

solutions for the velocities can be written in terms of the above Green's functions, the resulting

integrals are not easily analyzed. Therefore, numerical integration of the governing ordinary

di�erential equations has been used instead.

First, the two-dimensional disturbance (independent of the axial variable �) is considered

and is taken to be

!0
z = 
z

1
p
4��

e
�(r�r0)

2

4� ; (47)

!0
� = �
�

r � r0

2�
p
4��

e
�(r�r0)

2

4� ; (48)

and

!0
r = in
�

e
�r2

0
4� � e

�(r�r0)
2

4�

r
p
4��

: (49)

These sources of vorticity are chosen such that, as � ! 0, the above functions reduce to the Dirac

delta function and its derivative centered at r0 and compare directly to the initial conditions

(24), and (25). The velocities must satisfy

w = 
�
e
�r2

0
4� � e

�(��r0)
2

4�

�2
p
4��

 2E(�; T ); (50)

�2(ur)�� + 3�(ur)� + (1� n2)ur = �
in� 1
zp

4��
e
�(��r0)

2

4� E(�; T ); (51)

and

�2(v�)�� + 3�(v�)� + (1� n2)v� =
 1
zp
4��

d

d�

�
�2e

�(��r0)
2

4� E(�; T ):

�
(52)

Equation (51) was solved numerically for various values of n and �0 with � = :5, and 
z = 1:0.

The results are shown in Figures 1 and 2 as functions of the real physical variables r and t. Figure

1 gives the maximum magnitude of the velocity component ur as a function of time. Contrary

to the prediction of the analytic solution of the Green's function, the large time behaviour of

this maximum is decay rather than exponential growth. The initial behaviour, on the other

hand, does show transient growth that is dependent on the strain rate. Thus, for large strain

rates, �nite amplitude disturbances may cause the system to become nonlinear, even though

the long-time solution is stable. In Figure 2, the velocity pro�les for ur are shown for n = 2

and �0 = 1. Figures 2a-b are for an initial vorticity disturbance which is distributed in space

(� = :5). This solution is equivalent to an integration of the Green's function over r0, and

produces a velocity pro�le that is decaying in time. Also to be noted is the oscillations as the

disturbance is convected into the core by the positive strain. The origin of these uctuations can

be traced to the exponential factor Ê(�; t), and speci�cally it is a result of the spatial variation

in the velocity of the traveling wave in the angular direction. It is interesting to note that the
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Figure 1: Plot of maxjurj as a function of time for a spatially distributed initial source of

vorticity (
z = 1:0, 
� = 0, � = :5, �0 = 1:0 and r0 = 2:0). Graphs for three values of n are

shown: (a) n = 1, (b) n = 2, and (c) n = 4.
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Figure 2: Plot of Re(ur) (solid) and Im(ur) (dashed) as a function of the physical coordinate

r for spatially compact and spatially distributed initial sources of vorticity (
z = 1:0, 
� = 0,

� = 1:0, n = 2, �0 = 1:0 and r0 = 2:0). Graphs for three values of � are shown: (a)-(b) � = :5,

(c)-(d) � = :01, and (e)-(f) � = :001.
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Figure 3: Plot of maxjurj as a function of time for a spatially compact initial source of vorticity

(
z = 1:0, 
� = 0, � = :001, �0 = 1:0 and r0 = 2:0). Graphs for three values of n are shown: (a)

n = 1, (b) n = 2, and (c) n = 4. The dashed curves are the Green's function predictions. The

symbols and the line through the symbols are the Green's function prediction and the calculated

response, respectively, for �0 = �:2
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Green's function does not predict this behaviour directly since the exponential factor appears

as Ê(r0; t). Therefore, the traveling wave velocity has no radial dependence. The velocity

uctuations and general decay in magnitude must be the result of the distributed nature of

the initial source itself. To explore this phenomenon, Figures 2c-d and Figures 2e-f show the

results of a numerical integration for � = :01 and � = :001, respectively. Both approximate the

solution to a delta function source quite nicely for small times, as can be seen by examining

the t = 2 graphs. The ur pro�le is linear near the origin and decays for r large as predicted by

equation (34). The predicted response to the delta function initial condition continues until the

cumulative e�ects of the exponential factor show themselves at t = 4. By comparison with the

previous results, the rapid uctuations are concentrated near the peak when � = :01 as opposed

to the broader uctuation when � = :5 and are not yet seen for � = :001. Of particular note

is that the magnitude of the solution for � = :01 is decaying which is consistent with the prior

results for the distributed source, and for the � = :001, the magnitude is still growing at t = 4

which is consistent with the Green's function results. The Green's function predicts exponential

growth for all time, but since there is a little bit of spatial variation in the initial pro�le, the

� = :001 solution eventually goes the way of the � = :01 solution. This can be shown to be

the case by examining the maximum of ur as a function of time for � = :001. The result of

this calculation for the same values of n and �0 as in Figure 1 are shown in Figure 3. For each

case with �0 > 0 there is an initial growth of the maximum, but then eventual decay. The

decay is delayed for smaller values of �0 which is consistent with the disturbance entering the

core of the vortex as the source of the departure from the Green's function predicted behaviour.

Shown as dashed lines in Figure 3 is the growth predicted by the Green's function solution. Of

some interest is the behaviour for negative strain. Also shown in Figure 3 is the solution for

�0 = �:2 which decays and shows no initial growth. In this scenario, the initial disturbance is

convected away from the core by the straining, and the Green's function prediction shown as

symbols is accurate. This investigation shows that the source of the uctuations in velocity as

the strain convects the disturbance toward the core are indeed a result of the spatial distribution

of the initial source of vorticity and that this spatial distribution leads to the eventual decay of

perturbations.

The set of initial conditions corresponding to the axisymmetric modes (n=0) are taken as

!0
r = 
r

r

r0
p
4��

e
�(r�r0)

2

4� e�i0z; (53)

!0
� = 
�

r � r0

2�
p
4��

e
�(r�r0)

2

4� e�i0z ; (54)

with !0
z obtained by requiring the vorticity to be solenoidal. The velocities satisfy

v� = �
i
r�

0r0
p
4��

e
�(��r0)

2

4�  1e
�i0� ; (55)

and

�2
d2ur

d�2
+ �

d ur

d�
�

"
1 +

20 
2
2

 2
1

�2

#
ur =

�i0 
2
2

 1

�2
1

p
4��

"

�
� � r0
2�

�
2�0
r
r0�

Z T

0
 2
1 dT

0

#
e
�(��r0)

2

4�

(56)
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Figure 4: Plot ofmaxjurj as a function of time for an axisymmetric (n = 0), spatially distributed

initial source of vorticity with 
r = 1:0, 
� = 0, �0 = 1:0, � = :5, 0 = 1:0 and r0 = 2:0.
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with the last equation being integrated numerically. The maximum of ur as a function of time

is shown in Figure 4 for various values of the strain rate. For this �gure, 
� = 0 and 
r = 1.

The above equation shows linear growth of the perturbation for the unstrained vortex �0 = 0.

For the strained vortex the same rate of linear growth is initially present and is independent of

the choice of �0. However, as time progresses the exponential decay becomes evident with the

decay occuring earlier for larger values of strain. The spatial pro�les of the velocity are swept

toward the center of the vortex by positive straining but, due to the absence of the traveling

wave, the pro�les remain smooth. For this case where the factor Ê = 1 and thus is not involved

in an integral representation of the solution, the results of the Green's function are predictive,

with no further interpretation necessary.

3.3 Three Dimensional Disturbances

It has been noted that the quantity
R T
0  2

1 dt
0 plays a key role in the dynamics of two-

dimensional disturbances (independent of the axial variable) and in the dynamics of axisym-

metric disturbances. In the �rst instance this quantity controlled the speed of a traveling wave

through the quantity Eein� and noticeable e�ects are produced when considering a velocity pro-

�le that evolves from a spatially distributed initial source. In the second instance, the quantityR T
0  2

1 dt
0 controlled the initial algebraic growth of the amplitude of the radial velocity compo-

nent. For the fully three-dimensional disturbance, the relevant quantity should be Eein��i0�,

which is a helical wave moving along the axial core.

The form of the initial condition selected is given by (53) and (54) with the additional factor

of ein� . The vorticity is given by (15)-(17) after requiring the initial vorticity to be solenoidal

in order to determine the !z component. It is convenient to work with the equation for angular

velocity given by

�2
dv�

d�2
+ 3�

d v�

d�
+ [1� n2 � 20

 2
2

 2
1

�2]v� =
1

 1

d(�2!z)

d �
+ i0

 2

 2
1

�2!r (57)

and the other velocity pro�les are determined directly from the vorticity equations (20) and (22).

The results of the numerical integration for the fully three-dimensional disturbances indeed show

the artifacts from the previous special case analysis, but should be considered as a completely

di�erent class of solutions. In Figure 5, the amplitudes of the velocity are shown as a function

of time for n = 2, r0 = 4, 0 = 1, 
r = 1:0 and !� = 0:0. The dashed curves correspond to a

delta-like initial condition with � = :01 and the solid curves show the evolution of a spatially

distributed initial condition with � = :2. The radial velocity demonstrates exponential growth

until the disturbance reaches the core of the vortex, and then there is rapid decline. As before,

the spatially compact initial vorticity disturbance experiences the exponential growth for longer

periods of time. The results for the other two velocity components are a little more ambiguous.

For the tangential velocity, there appears to be a weaker exponential growth, especially for

� = :01. For � = :2, there is very little growth of the tangential velocity. The axial velocity

demonstrates basic exponential decay except for a short initial period where algebraic growth

occurs. This is easily seen in Figure 5c where �0 = 1:0. For �0 = :2 there appears to be a balance

between the algebraic growth and the slower exponential decay.
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Figure 5: Plot of maxjurj, maxjv�j and maxjwj as a function of time for a spatially compact

(� = :01, dashed) and spatially distributed (� = :2, solid) initial source of vorticity (
r = 1:0,


� = 0, n = 2, �0 = 1:0, 0 = 1:0, and r0 = 4:0). Two values of the strain rate were chosen:

(a-c) �0 = 1:0 and (d-f) �0 = 0:2.
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Figure 6: Plot of the real part (solid) and imaginary part (dashed) as a function of the moving

coordinate � for a spatially distributed initial source of vorticity (
r = 1:0, 
� = 0, � = :2,

� = 1:0, n = 2, �0 = 1:0 and r0 = 4:0). Graphs for three values of time t are shown: (a)-(b)

t = 0, (c)-(d) t = 2, and (e)-(f) t = 4.
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Figure 7: Plot of the real part (solid) and imaginary part (dashed) as a function of the moving

coordinate � for a spatially compact initial source of vorticity (
r = 1:0, 
� = 0, � = :01,

� = 1:0, n = 2, �0 = 1:0 and r0 = 4:0). Graphs for three values of time t are shown: (a)-(b)

t = 2, (c)-(d) t = 4, and (e)-(f) t = 5.
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In Figures 6 and 7, the angular and radial velocity pro�les are shown as functions of the

moving coordinate � for �0 = 1:0, r0 = 4:0, n = 2,  = 1:0 
r = 1:0, and 
� = 0 which are the

conditions for Figure 5a-c. The magnitudes of the velocities are increasing as time progresses.

At around t = 4, the e�ects of the factor E start producing the uctuations in the tangential

velocity components with the uctuations being more prevalent for the spatially distributed

initial conditions than for the spatially compact initial conditions. For the case � = :2, the

radial uctuations in the radial velocity pro�le are not as visually evident, but have produced

somewhat of a smoothing e�ect. For the case of � = :01 there are no discernible e�ects of

the factor E on the radial velocity pro�le, even for t = 5. This is because the e�ects are still

concentrated in a small interval around � = 4 as can be seen by the �gures for the tangential

velocity. As time progresses, the solutions for � = :01 will show greater signs of the e�ects of

the factor E and will decay in magnitude quite rapidly as can be determined from Figure 5.

4 CONCLUSIONS

The general problem of vortices subjected to perturbations is considered within a completely

di�erent framework than has heretofore been done. First, the nature of any vortex is reviewed

with respect to the velocity �eld that might be required. Intrinsically, it is suggested that any

vortex must be three-dimensional and such ows are usually under the inuence of positive or

negative strain.

Second, the question of what might happen if perturbations are introduced into one of these

ows has been a major challenge due to the fact that no direct mathematical analysis has been

possible. The use of classical stability techniques that employ separable solutions is not possible

in view of the underlying complications. Indeed, save for some numerical treatments related

to special approximations, success has been only with those ows that are vortical in a plane.

This work o�ers a means whereby these obstacles can be overcome and still include the full

three-dimensionality of both the mean vortex and the perturbation �eld.

If the strength of the vortex is strong enough and no boundaries are present, any e�ects

due to viscosity are con�ned to the core. In e�ect, this means the core has a �nite size and no

component of the velocity is discontinuous. To a large degree of approximation, viscous e�ects

can also be neglected in the analysis of the perturbation dynamics. Even on this basis, it is

shown that the perturbation �eld does develop a core and no component of the velocity results

in a discontinuity. And, the bene�t of being able to obtain analytical closed form solutions for

the initial-value, boundary-value problem is an asset. This has been possible for arbitrary initial

values. Speci�cally, a potential three-dimensional vortex is subjected to perturbations at time

t=0 and the full three-dimensional problem is solved for all values of time.

The strategy used for solution directly involves the perturbation vorticity. The linearized

equations governing the vorticity are solved subject to initial distributions speci�ed as functions

of the space variables. The kinematic requirement that the vorticity be solenoidal is insured.

Then, these results are used to solve for the velocity and meet proper boundary conditions. For

localized vorticity (speci�ed as Dirac delta functions), there is transient growth in the magnitudes

of the velocity components. It is also found that the larger the strain rate, the larger the transient

growth and this goes on until the disturbance enters the core of the vortex. For distributions
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of the perturbation vorticity that are more evenly distributed in space, there is little, if any,

transient growth for the velocity. Asymptotically, no disturbance survives regardless of whether

or not it is localized. The special cases of a two-dimensional or an axisymmetric vortex are

included. Even though di�usion is absent in this work, it appears that, once vorticity is di�use

{ as can be inferred from the more evenly distributed initial input { then even severe strain

cannot enhance the ow.
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